On the Localization of Factored Fourier Series

نویسنده

  • Hüseyin Bor
چکیده

HÜSEYİN BOR Abstract. In this paper, a general theorem dealing with the local property of | N̄ , pn, θn |k summability of factored Fourier series has been proved , which generalizes some known results. 2010 AMS Subject Classification: 40G99, 42A24, 42B08.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the ∣∣N, pn∣∣k Summability of Factored Fourier Series

In this paper we deal with a main theorem on the local property of ∣∣N, pn∣∣k, k ≥ 1 summability of factored Fourier series, which generalizes some known results. Mathematics Subject Classification: 40D15, 40G99, 42A24, 42B15

متن کامل

On the local properties of factored Fourier series

In this paper we have improved the result of Bor [Bull. Math. Anal. Appl.1, (2009), 15-21] on local property of N, pn, θn k summability of factored Fourier series by proving under weaker conditions.

متن کامل

Local Properties of Fourier Series

A theorem on local property of |N̄,pn|k summability of factored Fourier series, which generalizes some known results, and also a general theorem concerning the |N̄,pn|k summability factors of Fourier series have been proved.

متن کامل

Local property of absolute weighted mean summability of Fourier series

We improve and generalize a result on a local property of |T |k summability of factored Fourier series due to Sarıgöl [6].

متن کامل

Determination of a jump by Fourier and Fourier-Chebyshev series

‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010